ÖZET
Lightning strikes from convective storms are a serious safety concern for public and businesses alike. Accurate assessment of local lightning risk is therefore crucial for various industries. However, it is usually not possible to obtain lightning climatologies with reasonable spatial detail, due to the scarcity of well distributed, long term observations. At this respect, meteorological models serve as a useful tool for creating lightning risk maps, provided that their output can be verified with available observations. In this study, a high resolution (3 km) lightning risk map has been constructed for Turkey, using output from Weather Research and Forecasting Model (WRF). The model was forced by the ECMWF’s ERA-5 reanalysis data, and run for the period of January 2014 – December 2018 (5 years). Simulations were conducted on high-performance computers offered by Amazon Web Services. Lightning flash rates were estimated from WRF output using the parameterization scheme proposed by McCaul et al. (2009). Model-derived lightning rates have been calibrated and validated by observed lightning data for the determined region. The spatial pattern and average rate of lightning flashes over the validation region have been found to agree reasonably well with available observations. The high resolution lightning risk map produced in this study is the first one for Turkey that is based on numerical modeling, and it will serve as an objective guidance for location-based lightning risk assessment in the country.
Bağlantı: https://meetingorganizer.copernicus.org/EGU2020/EGU2020-5031.html